Name: Period: Seat#:

Directions: Try these problems. If you can DO them, check the box (\square). If you CANNOT do them, write some notes TO YOURSELF about what you need to study to succeed at these problems.

S30 – Quick Check #1

Kc and **K**p

Write the equilibrium expression (K_c) for: $ZnCO_3(s) \leftrightarrows Zn^{2+}(aq) + CO_3^{2-}(aq)$

 $K_c =$

Write the equilibrium expression (K_p) for: $2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \leftrightarrows 2 \operatorname{NOBr}(g)$

 $K_p =$

Manipulations

$O_2(g) \rightarrow 2O(g)$ $R_p = 1.2 \times 10$ what is the $R_p = 101$. $O(g) \rightarrow 72O_2(g)$	$O_2(g) \leftrightarrows 2 O(g)$	$K_p = 1.2 \times 10^{-10}$	What is the K_p for:	$O(g) \rightleftharpoons \frac{1}{2}O_2(g)$
--	----------------------------------	-----------------------------	------------------------	---

Adding Reactions

Calculate K_c for the reaction: $SnO_2(s) + 2 CO(g) \leftrightarrows Sn(s) + 2 CO_2(g)$ given the following information: $SnO_2(s) + 2 H_2(g) \leftrightarrows Sn(s) + 2 H_2O(g) \quad K_c = 8.12$ $H_2(g) + CO_2(g) \leftrightarrows H_2O(g) + CO(g) \quad K_c = 0.771$

S31 – Quick Check #2

Reaction Quotient

 $H_2(g) + Br_2(g) \leftrightarrows 2 HBr(g) \quad K_c = 5.5 \times 10^3$

 $[H_2]=0.10 M$ $[Br_2]=0.20 M$ [HBr]=8.5 M

What will happen to the [HBr] as this reaction approaches equilibrium? (Show your calculation.)

G K_p & K_c

 $2 \text{ NO}(g) + \text{Br}_2(g) \leftrightarrows 2 \text{ NOBr}(g)$ $K_c = 1.2 \times 10^{-10}$ at 25 °C

Write the K_p expression for this reaction and calculate its value. [R = 0.0821 L·atm/mol·K]

Le Châtelier's' Principle Demo

		$Co(H_2O)_6^{2+}(aq) + pink$	$4 \operatorname{Cl}^{-}(\operatorname{aq}) \rightleftharpoons$	$CoCl_4^{2-}(aq) + 6$ blue	5 H ₂ O(l)
a)	add HCl(aq)				
b)	add H ₂ O(l)				
c)	increase the temperature				
d)	decrease the temperature				
e)	add AgNO ₃ (aq)				

Note:

Predict (a) and (b) before the demonstration. Watch (c) and determine whether the reaction is endo- or exo-thermic. Predict (e) before the demonstration.

S33 – Quick Check #3

ICE Box Problem

A solution is prepared by dissolving 0.050 mol of diiodocyclohexane, $C_6H_{10}I_2$, in the solvent CCl₄. The total solution volume is 1.00 L. When the reaction, $C_6H_{10}I_2 \leftrightarrows C_6H_{10} + I_2$, comes to equilibrium, the concentration of I₂ is 0.035 mol/L. What is are the concentrations of $C_6H_{10}I_2$ and C_6H_{10} at equilibrium?

$C_6H_{10}I_2$	₽	$C_{6}H_{10}$	+	I_2